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Supplementary Text 

Diversity and Innovation 

Historically underrepresented groups come from distinct walkways, and have different experiences 

and perspectives than majority group members in science. Given this “outsider” vantage, 

underrepresented groups may perceive things differently from the majority group members, 

drawing relations between ideas and concepts that may have been missed or ignored. As such, they 

may be more likely to create novel connections between ideas in comparison with individuals who 

share the background and experiences of the traditional group already in place. Therefore, the 

inclusion of underrepresented groups in science may increase the variety of perspectives brought 

to bear on scientific research. Such intuitions align with recent work (1-4). For instance, Page (1) 

(see also Bell et al. (2)) reviews a large and growing body of evidence revealing how greater gender 

and racial diversity on teams creates a more heterogeneous pool of thinkers, and that in the long 

run (after some conflict), these groups are more innovative and outperform more homogenous 

groups. In the case of underrepresented groups – such as women and minorities – they may bring 

a perspective and set of concerns that are missed by the majority groups present in science (who 

were the “default” from the outset), and therefore, they introduce heterogeneity to the collective 

thought process. This heterogeneity generates what he calls “diversity bonuses” to improved 

problem solving, increased innovation, and more accurate predictions. 

 

Measuring Innovation Through Citations, Keywords, and Text 

Prior researchers have studied citations or keywords to understand scientific innovation. For 

instance, some prior work (5) regarded novel recombination of bibliographic sources to be a sign 
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of innovation. Here, we extend prior work by using recombinations of concepts used in scientific 

text, thus likely maintaining references to the explicit meaning of said concept combinations (6). 

Keywords are an alternative to citations. They constitute “plausible building blocks of 

content” (7), and get at taxonomic aspects of scientific knowledge. Prior work used keywords to 

identify where innovation arose from subfield integration (8). An issue with keywords, however, 

is that it is difficult to ascertain whether they classify the general topic of a paper or refer to specific 

contents and innovations contributed by it. Researchers, and often editorial teams, assign keywords 

to optimize indexing and retrieval (9). The use of keywords then begs the question of whether they 

locate innovation in a research article or in its classification.  

As an alternative to keywords, prior work used chemical entities from annotated 

MEDLINE abstracts as their units for innovation (7). By extracting chemical entities from 

abstracts, this work overcome potential confounding with classification dynamics. Yet, the study 

of chemical entities is highly specific to one field: chemistry. As such, scholars acknowledge, “new 

methods should be developed for mining building blocks with finer granularity” (7: 901). Our 

analysis of novel recombinations of concepts in documents overcomes the issues of citations and 

keywords and thus elaborate and extend the research program on innovation. 

There are at least two more advantages to measuring innovation and impact with the 

language of PhD recipients in dissertations vis-à-vis citation records of scholars in journals. First, 

language metrics are relatively unaffected by academic search engines, journal guidelines, or 

differences in indexing across corpora, or by the variety of reasons as to why scholars cite others’ 

work (6, 10). As such, we detect signals of innovation that may otherwise be hard to trace and 

which are insensitive to potential biases resulting from corpora that unjustifiably exclude citations 

in other academic fields. Second, our corpus captures a near-population of scholars’ early texts 
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and does not discriminate by prioritizing some academic fields at the expense of others. As such, 

the language and innovations of slower, book-oriented science (e.g., History), medium-paced, 

publication-oriented science (e.g., Sociology), or faster, proceedings-oriented science (e.g., 

Computer Science) are all represented and measured in our corpus. 

Finally, a potential drawback of our universe (ProQuest dissertations) is that the link 

introductions we identify in ProQuest dissertations might have arrived earlier in other corpora (e.g., 

peer-reviewed journals, or even fiction). However, it provides (at the very least) unique insight 

into which dissertations are novel compared to others dissertations and, thus, which students are 

competitive vis-à-vis others with their earliest innovative sparks in the knowledge they produce. 

 

Structural Topic Models for Concept Extraction 

Structural Topic Models 

To identify scientific novelty in concept use, we first fit Structural Topic Models (STMs) (11) 

where we model the prevalence of topics in dissertation abstracts (~1.2 million) as a linear function 

of the year in which scholars obtained their doctorate. Structural topic modelling is an 

unsupervised learning technique that represents texts within a corpus as a mixture of latent 

thematic dimensions without a priori knowledge of what these dimensions might be. STMs rely 

on co-occurring words within documents. In an iterative process, this kind of model draws samples 

from a corpus to derive a series of topics – i.e., weighted sets of co-occurring words in a text. The 

outcome of this process is twofold: (a) the model arrives at the set of topics best suited to explain 

the thematic dimensions of a corpus of texts; and (b) the model produces an optimal representation 

of every document as a mixture of topics. 
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More formally in a topic model, a given topic k is associated with a probability mass 

function βk over a given vocabulary V (12). In every document d, the model draws a topic for each 

word position n from a multinomial based on a global prior distribution over topics,  θd. Then, the 

model draws the observed word w for position n from a multinomial based on βk. The distribution 

βk associated with topic k controls the probability of drawing the v-th word in the vocabulary for 

topic k (12). The model learns the θ and β distributions via variational expectation-maximization 

(see 13, 14). For the purpose of this study, we can think of the distributions βk  as distinguishing 

important words in the vocabulary with respect to topic k. STMs are a particular kind of topic 

model that allows us to include additional information into the model (12); namely, we estimate θ 

as a function of the year of publication of the dissertations. Specifically, we allow topics to be 

more or less prevalent over time. We do this by modelling the prevalence of topics in dissertation 

abstracts as a linear function of the year in which scholars obtained their doctorate. We found that 

including publication metadata in θ  had little impact on the  β distributions we use to extract 

documents. Trying to model β distributions directly as a function of year of publication was 

computationally intractable. Further, we discovered that STMs and simpler LDA topic models 

produced very similar β distributions. We opted to keep the STMs as they introduce more 

information without a loss in the quality of the topics or their interpretability. 

In our corpus, topics refer to areas of scientific research and discourse. We extract terms 

that STMs identify as the most distinct and heavily used within each research area. We contend 

that scientific innovation involves novel combinations of such terms.  The affordance of STMs in 

comparison to simpler concept extraction strategies –i.e., choose the top n TF-IDF weighted 

terms– is that it allows us to extract terms that play a significant role in an underlying thematic 

structure. 
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We mention “best-suited” topics and “optimal” document representations because STMs, 

like other mixture models of its kind, allow for the validation of different numbers of possible 

latent dimensions or themes. Here, we fit STMs within a range of a set number of topics [K = 50-

1000], with incremental steps of 50 (and steps of 100 when K > 600 to save computing time). 

Internal and external validation indices show that the optimum of the number of topics is at 

approximately K = 400-600 topics. In the main text of the study, we have presented results for K 

= 500. This means that we used the weights on the vocabulary from an STM with 500 topics to 

extract the concepts that best describe the latent dimension in the corpus. Namely, the extracted 

concepts belonging to the highest FREX-score terms of each topic (detailed below). However, our 

results remain robust under alternative specifications for concept extraction (leaning towards either 

frequency, exclusivity, or balancing both equally) and for a range of K (for 400, 500, and 600) (see 

Table S1). Next, we first detail how we preprocess the data and arrive at K = [400-600] based on 

several fit metrics, and then outline the concept extraction using FREX. 

 

Preprocessing Texts and Fitting STMs 

We preprocess the data by the following steps. We remove stand-alone numbers, punctuation, 

English stop words, and special characters from the text. However, we keep numbers belonging to 

terms such as molecules (e.g., H2S), which might refer to substantive concepts. We then stem the 

words using the Snowball algorithm and remove those tokens that only appear once across all 

documents. We extract n-grams for sequences of words that occur more frequently than by chance 

using El-Kishky et al.’s method (15). We then fit STMs at K [K = 50-1000] in incremental steps 

of 50 (and steps of 100 when K > 600 to reduce computing time) by training each for 20 epochs. 
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Internal validation 

We then internally validate the models to find out what number of topics retrieves the most-

discriminant latent thematic dimensions; which is equivalent to finding the dimensionality 

reduction solution that retains the most information about the corpus. To do so, we consider both 

the coherence and exclusivity (11, 16) of the topics produced by models at different values of K. 

The coherence of a topic assesses its internal consistency. Semantic coherence is obtained 

by calculating the frequency with which high-probability words within a given topic co-occur in 

documents. The most-probable words in a highly-coherent topic tend to appear together in 

documents. Conversely, a low-coherence topic comprises high-probability words that appear in 

isolation from each other. It would be difficult to argue that a low-coherence topic is of much use 

in representing documents, since it can appear in multiple documents with very different terms.  

Assessing topics solely on their semantic coherence is not enough, since this measurement 

can be trivially maximized by reducing the number of topics. For instance, if we had a single topic, 

high-probability terms would co-occur by construction. Similarly, a topic that comprises very 

common words of a topic (e.g., data, study, etc.) will appear to be very coherent since these terms 

co-occur in most documents by convention. Therefore, as a complement to semantic coherence, 

we want our model to produce topics that have very distinct high-probability terms; that is to say, 

we want topics with high exclusivity. Exclusivity measures the extent to which words within a  

topic are distinct from the words in other topics. There is a trade-off between a topic’s exclusivity 

and semantic coherence – i.e., overall high-probability words tend to drive very coherent topics, 

since they are likely to co-occur; but these words also tend to co-occur with the terms from many 

topics, and so they drive low exclusivity topics. Given this trade-off, we explore the solution space 

along values of K looking for the model where both exclusivity and coherence plateau and do not 
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improve nor decrease with a lower or higher number of topics, thus providing us with a potential 

limit for K. Figures S1-A and S1-B shows that this limit is likely to be in the range of K = 400-

600. 

 

External validation 

In addition to internal validation, we also employ external validation. To this end, we compare the 

distance between documents based on an STM with a given K with the document distances based 

on author-provided keywords and fields. We use the academic fields and keywords that students 

file with their dissertations. We draw a random sample of 1000 documents that remains constant 

across values of K, and compute the cosine similarity between document pairs in this sample based 

on the documents’ topic mixtures. In so doing, we leverage that all document pairs are comparable 

in vector θ, which represents any given document as a probability distribution over all topics. We 

then consider any given document pair to be related if their cosine similarity is greater than the 

median similarity in the sample. For the field and keyword relations between documents, we 

consider whether bigrams (fields + keywords) occurring within a document co-occur between two 

documents; when this is the case, we render these documents related. 

We represent the relations described above as two document-to-document networks, one 

STM-based and one bigram-based network, and study their overlap. We are interested in four kinds 

of comparisons at the level of document dyads, which we can picture as a two-by-two matrix where 

the rows indicate if a document dyad appears in the STM-based network (Yes/No) and the columns 

indicate if the dyad appears in the bigram-based network (Yes/No). Given the comparisons of 

interest, we compute the Matthew correlation coefficient, which measures the overlap at the dyad 

level between the STM and bigram networks. An advantage of the Matthew correlation metric is 
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that it accounts for overlap on true negatives (i.e., when a document dyad does not appear in either 

the STM or the bigram network). The Matthew correlation coefficient is defined as follows: 

Matthew correlation	= TP×TN-FP×FN #(TP+FP)(TP+FN)(TN+FP)(TN+FN)⁄ , where T and F 

define true and false, and P and N define positives and negatives. Figure S1-C depicts the result of 

the correlations between keyword and STM relations. We find that the curve follows a similar 

trend compared to the internal validity metrics. There is a decrease as K moves beyond 500, 

providing some external validation with user-labeled information that the number of topics seems 

to optimize around K = 500. 

 

Consistency 

Additionally, we study the consistency of topic assignments across the range of K [50-1000] – i.e., 

whether the topics retrieved at one value of K are informative of the topics obtained at another 

value. To this end, we first classify all documents by their highest-proportion topic at each value 

of K. This step results in a set of classification schemes, one scheme for each model with a different 

value of K.  We then compare the classification schemes of consecutive models (i.e. the document 

classification under K = 50 compared to the classification under K = 100) using the Fowlkes-

Mallows index (FM). The Fowlkes-Mallows (FM) index measures overlap between two distinct 

clusterings of the same data set. FM is part of a family of indices for external clustering validation, 

such as the Jaccard coefficient and the Rand statistic, that use the agreements and/or disagreements 

of the pairs of data objects in different partitions (17). This measure is the geometric mean between 

precision and recall and is bounded between 0 and 1; higher values indicate greater agreement 

between two partitions – i.e., implying higher similarity in how the two partitions are clustered. 

There are external clustering validation metrics for multi-labeled corpora, like the document-topic 
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matrices produced by STMs (18), but we use the FM index for simplicity, as we want to describe 

the alignment of multiple STMs at different values of K.  It shows us at which K the overlap 

plateaus to pinpoint our number of topics.   

In Figure 4-D we describe the rate at which the overlap between classification schemes 

vary when comparing each model with K topics to the immediate prior model with smaller K. We 

see relatively high values of consistency with a gradually growing curve, which suggests that 

classification schemes are more similar at the higher end of values of K.  The range of K suggested 

by FM is in line with the previous measures: we see a steady rise and somewhere between K = 400 

and K = 600 it stabilizes and only a gradually improvement afterwards. Raw FM scores suggest 

that more than two-thirds of document-to-topic assignments are stable from K = 400.  

 

The “Right” K 

Finally, we emphasize that we do not use the “right” K, as that would imply that we are perfectly 

aware of the topic (and, hence, scientific) universe. We use K = 500 in the main text as the metrics 

all seem to plateau around that value. However, if we choose K = 400 or K = 600 and measure 

concept/link introduction and uptake in a similar way (using low, medium, and high FREX-weight), 

our results do not qualitatively change. The “right” K – if one is to interpret that as the set number 

of scientific topics at the specialization within disciplines level – likely is somewhere between 

400-600. A benefit of our approach, and what our associated results show, is that the key results 

stay mostly qualitatively similar whichever K (400, 500, or 600) we choose. 
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Concept Extraction With FREX 

Using the STM output, we then obtain the most-frequent and most-exclusive terms within a given 

topic. The most-frequent terms reflect general language present in many of the topics (e.g., “data,” 

“analyze,” “study,” etc.), whereas the most-exclusive terms may be too idiosyncratic to be 

informative in and of themselves (e.g., “eucritta melanolimnete,” “periplanone b,” etc.). Concepts 

that are both common and distinctive balance generality and exclusivity. To get at this, we extract 

concepts on the basis of their FREX score (19), which compounds the weighted frequency and 

exclusivity of a term in a topic. Here, we explore three weighting schemes: equally balancing 

frequency and exclusivity (50/50), attaching more weight to frequency and less to exclusivity 

(75/25), and attaching more weight to exclusivity and less to frequency (25/75). We then extract 

the top-500 FREX-words per topic – K = [400-600] with incremental steps of 100 – and measure 

our innovation variables for all three K’s and three FREX weighting schemes (i.e., nine scenarios 

in total). The more-frequent semantic space defines the more-standard scientific vocabulary, and 

the more-exclusive semantic space is more idiosyncratic indicative of non-standard concept usage. 

Sensitivity analyses provide robust results across the scenarios for novelty, impactful novelty, and 

recognition (see Table S1). For the results depicted in the main text, we report the scenario where 

frequency and exclusivity are equally balanced at K = 500.  

 

On Analyzing Abstracts Versus Full Texts 

We analyze dissertation abstracts based on the conjecture that abstracts are a good approximation 

of the knowledge and concepts that populate full texts. Prior work consistently shows that this 

conjecture is a reasonable one, as abstracts provide a clean, uncluttered synthesis of the full text. 

Prior work suggests that the goal of abstracts is to summarize and emphasize a paper’s key 
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contributions (20). Empirical work observes that abstracts provide sufficient syntheses of concepts, 

tables, graphs, and topics in papers (21-24). Pragmatic arguments in favor of using abstracts is that 

the use of full text is highly restricted by its general inaccessibility, biased sampling, poor 

scalability, and high demand on computational resources for large corpora. In contrast, abstracts 

are easier to obtain and typically demand far fewer computational resources. Additionally, with 

the use of full text come some theoretical difficulties. For instance, if we study concept co-

occurrence in full text, at what distance do concepts need to co-occur in order to render the co-

occurrence substantively meaningful? In the same text, section, paragraph, or sentence? Co-

occurrences in abstracts are far more likely to be substantively meaningful as abstracts only cover 

~10 sentences. Finally, our main results would only qualitatively change if numerical minorities 

write abstracts that are inherently different compared to those written by majorities. Given the 

general goal of abstracts – i.e., summarizing main contributions and findings (20) – we assume 

that the retention of innovations in abstracts versus full text is not higher (or lower) for numerical 

minorities vis-à-vis majorities. 

 

The PMI Score to Identify Meaningful Links 

The significance score (25) for links is defined as follows, given a concept link L = (a, b) we 

compute such a score as: 

 PMI (L)=log10(
Pr (a,b)

Pr (a)×Pr( b )
), (1) 

where Pr(a, b) is the likelihood that concept link a–b occurs, Pr(a) is the likelihood of concept a 

and Pr(b) is the likelihood of concept b. “Good” links will then result in a high PMI scores – 

significantly more likely to occur than chance. We then filter for spurious recombinations using a 

rank-based cutoff based on the PMI score. To ensure sufficient power for computing PMI, we only 
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consider those links where individual terms occur in at least 10 theses. We consider the top 10 

million links, so as to have ample opportunity to introduce “novelty” while simultaneously 

removing obviously meaningless links. This is achieved by setting a cut-off on the PMI score for 

link introductions.  

 

Student Gender and Race 

The ProQuest dissertation corpus (26) does not contain records of gender and race of students that 

filed their theses. Therefore, we predict the race and gender of students based on their first (gender) 

and last (race) names (27). For race, we compiled US Census data of 2000 and 2010 (28). These 

censuses show relative frequencies of racial backgrounds of last names that occur more than 100 

times (N = 167,409 distinct last names that cover > 95% of the US population). For instance, it 

shows the fraction of individuals who carry the last name “Jones” whom are white. The correlation 

in racial background percentages of overlapping names (N = 146,516) in both censuses is .99. For 

gender, we compiled data of the US Social Security Administration (29). This corpus shows the 

fraction of girls and boys among the top 1000 first names from people born from 1900 to 2016 (N 

= 96,122 distinct first names that occur at least five times) – e.g., the fraction of girls named “Jane.” 

We matched distinct last names of the censuses to the last names (up to the first space or 

hyphen) in data from Private University where we are aware of self-reported race (Ntotal = 24,150; 

Nmatch = 20,264 [83.9%]). We matched all distinct first names of the social security data to the first 

names in the Private University data where we are aware of self-reported gender (Ntotal = 35,469; 

Nmatch = 31,026 [87.5%]). 

An algorithm automatically traced which thresholds of the fraction of the last- and first-

name carriers’ race and gender yield the highest possible correlations between real and assigned 
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gender or race. It did so by correlating self-reported gender and race with all permutations of the 

thresholds in steps of 1 percent. A threshold where at least 71.45% of the first-name carriers are 

female to assign students to a female gender provided the highest correlation between self-reported 

and assigned gender (r = .91). In order to identify the gender signal of those names that are not 

classified according to this prior classification scheme, we employ the Genderize.io classification 

scheme (e.g., see 30-32) (agreement between our and the Genderize.io classification is > 95%). 

We arrive at ~8.5% of cases with unknown genders. 

Additionally, the highest correlations for race were .83 (white, 12,929 of 13,197 identified 

correctly [97.2%]), .93 (Asian, 5,079 of 5,436 identified correctly [93.4%]), .73 (Hispanic, 698 of 

992 identified correctly [70.4%]), and .25 (African and Native American, 63 of 639 identified 

correctly [9.9%]). Using these thresholds, we classify students into a racial background and gender. 

If students are classified into multiple races given our thresholds, we use a decision rule; (1) when 

a student was classified into the African and Native American or any other category, we classify 

them as African and Native American; (2) when a student was classified into the “Hispanic” and 

“white” or “Asian” category, we classify the student as “Hispanic”; (3) when students were 

classified into the “Asian” and “white” category, we classified the student as “Asian” category. 

Finally, if the thresholds did not classify a student into a category, we used a majority rule to 

categorize the student into a race. For instance, when “Yao” does not meet a threshold while most 

individuals named “Yao” are in fact Asian we classify these as “Asian.”  

The fraction of correctly identified in the “African and Native American” category is low. 

We found that these students are predominantly labelled under “white” (528 white out of 639 Other 

Race). We therefore incorporate a second method that utilizes the sequence of characters for 

classification of race using names (33). Specifically, we utilize their method using full names in 
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the Florida voting registration data (34). The precision of this method is especially high for 

Hispanic and African American names – .83 and .74, respectively – so patching our classifications 

with theirs combines the strength of our “white” and “Asian” and their “Hispanic” and “African 

American” classifications. If the probability of a certain name being Hispanic or non-Hispanic 

Black is higher than .6 using their method, we label those cases as such. We ascertain that those 

cases are highly likely to belong to those categories. Additionally, if our classification yielded an 

“unknown” case, if the probability that a name is Hispanic or non-Hispanic Black is higher than .3, 

and that probability is twice as high as the probability that a name is “White,” we label those cases 

as Hispanic or African American. This filters the classification for very low probabilities, while 

simultaneously being confidant that those names significantly differ and do not have a clear signal 

for whites. Finally, if cases are still unknown, and the probability of a name being Asian or White 

is higher than .5, we label those cases as such. Our number of cases with unknown race is ~10.8%. 

Nonetheless, to ensure that remaining errors in our classification of race by name do not affect our 

results, we run a sub-analysis using only the highly certain cases for inferring race. The results 

using this smaller but higher-precision dataset are qualitatively similar to the ones presented in the 

paper. 

 

Academic Discipline 

Some theses do not identify the department from which they got their degree. To infer this, we 

first extracted theses with department degrees in ProQuest dissertations. Each department was then 

semi-manually canonicalized to a National Research Council (NRC) department. Given that there 

are many spelling mistakes, a fuzzy string matching was used to match the ProQuest department 

with the actual listed NRC departments based on a 90% string similarity (a manual analysis showed 
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100% accuracy). For the frequent department names that matched around and 70-89% to an NRC 

department, each canonicalization from ProQuest to NRC were manually verified (while rejecting 

those that were invalid). All dissertations whose department name could not be mapped to an NRC 

department had their department inferred as if it had not been listed. We used the successfully 

matched dissertations with an NRC department (N = 178,511) as a ground truth. Next, we trained 

a Random Forest Classifier (RFC) based on a list of features from the dissertation; binary features 

for whether the dissertation was listed with an NRC subject category, binary features for whether 

the dissertation was listed with ProQuest subject category, all keywords used for the dissertation, 

the topic distribution of the dissertation abstract using a 100-topic Latent Dirichlet Allocation 

model, the average Word2Vec word vector for each of the (1) keywords, (2) ProQuest fields, (3) 

NRC fields, and (4) title, and the degree-granting university. The RFC infers department degree 

with 96% precision (NDISCIPLINE = 84). 

 

Population Coverage and Data Weights 

During the study period (1977-2015) approximately 1.2 million doctorates were awarded in total. 

This suggests that the ProQuest data cover approximately 86% of the total number of US 

doctorates over three decades. If we plot the ProQuest database and the population of awarded 

doctorates in the US over time, the trends are highly similar. In our inferential analyses, we weigh 

the data from 1982 to 2010 by the total number of doctorates awarded by an institution in a given 

year to account for possible selectivity between universities in years in filing their doctorates’ 

theses in the ProQuest database. To do this we calculate for each distinct year-university 

combination (e.g., at Harvard University in 1987) the number of PhD recipients and divide this 

number by the total number of PhD recipients in the ProQuest data, 1982-2010. This yields the 
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relative number of PhD recipients in the ProQuest data per year for each university. We repeat this 

calculation for the total PhD recipients according to the data from the National Science Foundation. 

We then divide the relative number of PhD recipients for the university-year combinations in the 

ProQuest data by the relative number of PhD recipients for the university-year combinations in the 

census to obtain our data weights. We use these weights as survey weights in our inferential 

analyses. We use Stata 13 for the inferential analyses in the paper and to compute average marginal 

effects shown in Figure 2-4. 

 

Inferential Models 

Analytically, our models take the following forms: 

 
 Pr(𝑌 = yj | µj, a) = 

Γ(yj+a
-1)

Γ(a-1)Γ(yj+1)
 ( 1

1+aµj
)
a-1

(
aµj

1+aµj
)

yj
 , 

(2.1) 

 where  

 µj = exp(β0+β1Xj+…+βkXj), (2.2) 

 Y  = β0+β1Xj+…+βkXj+ ε , (3) 

 Pr(𝑌 ≠ 0 | Xj) = 
exp(β0+β1Xj+…+βkXj)

1+exp(β0+β1Xj+…+βkXj)
 . (4) 

Equation (2) models the expected count/rate of link introductions (novelty) or uptake per new link 

(impactful novelty), equation (3) models the average distality of the introduced links by students, 

and equation (4) models career success as becoming a faculty researcher or sustaining a research 

career. All equations (2)-(4) are for individual student j. In these models, β0 represent intercepts 

and β1Xj+…+βkXj represent our vector of covariates from the first to the kth variable that predicts 

the outcome Y. Variables included in this vector are our main predictors (e.g., indicators for gender 

and race representation) and the confounding factors (institution, discipline, and year).  
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Uptake per new link (impactful novelty) is a non-integer rate instead of an integer event 

count. An occasional method of modelling non-integers is to offset the negative binomial 

regression with logged independent variables. Here, we do so for the number of new links when 

we model uptake per new link so as to interpret coefficients of other independent variables as rate 

increases or decreases (35, 36). A (simplified) example is an expected count µx , where µx	is 

dependent on some covariate X, so that log(µx)= β0	+	β1X. If tX would then indicate exposure (or 

offset), then log(µX	/	tX)	= β0	+	β1X models an expected rate (count divided by exposure) and this 

is analytically equal to log(µX)	= β0+	β1X	+ log(tX). Hence, we include a logged offset variable tX 

in the form of logged number of new links. As such, we are able to model uptakes per new link as 

non-integer rates. 

 

Linking ProQuest to Web of Science 

We attempt to link each student in the ProQuest corpus to their corresponding identity in two sets 

of publication corpora from the Web of Science (WoS) obtained from Clarivate Analytics. The 

first set contains publications from 1900 to 2009 (~22 million) and the second set contains 

publications from 2009 to 2017 (~16 million). The matching process between ProQuest 

dissertations and both WoS corpora relies on substantial meta-data in each of the three data sources. 

The pre-2009 WoS data does not contain canonical author identifiers with high precision 

so we use a disambiguated author cluster (37), which contains groups of publication records in 

WoS  estimated to be authored by the same person with substantial certainty (83%). The post-2009 

does contain disambiguated authors by Clarivate Analytics with substantial accuracy post-2009, 

but with poor accuracy pre-2009. In order to make optimal use of both disambiguated datasets, we 

needed to reconcile the pre-2009 clusters and the post-2009 clusters. Hence, the goal is to link 
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these two author-disambiguated datasets so as to benefit from the high accuracy from both datasets 

across the whole time range and increase coverage throughout. We pinpointed which author-

clusters in the pre-2009 set were which clusters in the post-2009 set. We generated a link between 

the pre-2009 and the post-2009 author clusters, indicating that both clusters are the same author, 

if any of the following conditions were met, in addition to sharing a full name: 1–75% of the pre-

2009 cluster articles are a subset of the post-2009 cluster articles; 2–There is at least one matching 

email address between an old cluster and a new cluster. Once these rules were applied, we finished 

cluster linking by manually checking and verifying a random sample of entries, in addition to 

automated verification of linking rules being followed on a larger random sample. The method 

above is conservative in its creation of links as a result of the strictness requiring a 75% match in 

order to link. This approach prioritizes the reduction of mistakenly-linked clusters at the expense 

of undiscovered linkages. Precision of the line-up between the two sets is 97%, which we inferred 

from a set of online, self-labeled publications by scholars that Clarivate Analytics provided 

(ResearcherID). 

  In turn, matching between WoS (linked pre- and post-2009) and ProQuest dissertations 

follows a multi-step sieve process, where scholar matches are evaluated using multiple successive 

criteria starting with the highest-confidence first: (1) number of article co-authorships with a 

known advisor or advisee, (2) number of articles where the WoS author is at one of the same 

institutions from the ProQuest data (as an advisor or advisee), (3) number of article keywords 

matching those from their dissertation keywords, (4) minimum string similarity of the authors’ 

names (as reported for each article) with the name in ProQuest, and (5) textual similarity of the 

articles’ abstracts and titles with the dissertation abstract. For naming similarity, our method is 

robust to minor typographic errors in names (as ProQuest information is manually entered) and to 
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recognized naming variants (e.g., Dave or David) and abbreviations in the first and middle names 

of the individuals. This entire matching process amounts to a maximum bipartite matching of the 

ProQuest and WoS authors, ensuring that one author from either side is never linked to more than 

one author on the other side. 

As this matching process could potentially be noisy, we take additional steps to 

heuristically reduce the potential for mismatches.  First, we restrict WoS matches to only those 

individuals whose publication history is similar to their graduation date; this restriction excludes 

matching those individuals whose nearest publication date is 15 years after or 10 years before 

graduation. Second, we avoid matching individuals where the bulk of their publication occurs 

before their graduation, except in the case where there is additional evidence to support the 

matching from co-authorship with their advisor.  Third, we avoid matching individuals whose only 

evidence for being the same person is their name similarity and a textual similarity between their 

dissertation and the articles (e.g., no evidence of being at the same institution where they would 

have graduated or advised students). 
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Figure S1.  Internal and external validity and coherence for structural topic models. 
(A-D) We highlight the range of K we use (K = 400-600). (A-B) Values of coherence and exclusivity 
across a range of K. With a rising number of topics exclusivity increases but plateaus at 
approximately K = 400, while coherence decreases somewhat continuously, although less steep 
from K = 250. (C) Matthew correlations between external relations between documents and 
keywords and relations between documents derived from the topic models. The correlations spike 
at K = 400 and stabilize thereafter. Robustness analyses for K = 450 yield the same results as the 
analyses for K = 400. (D) Fowlkes-Mallows indices indicating overlap of topic-assignments for 
consecutive K’s. The Fowlkes-Mallows correlation plateaus from approximately K = 300 and 
onwards, with a spike at about K = 600. 
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Figure S2. Distribution of novelty and impactful novelty. 
(A) Density distributions of novelty (# new links) for a different number of K and difference 
scenarios for FREX (low, medium, or high frequency). Despite absolute differences, the 
distributions are qualitatively similar. (B) Mean novelty over time. The figure suggests that the 
“stable” novelty starts at approximately 1982. The main paper analyzes the data from that point 
onward. (C) High correlations between the different novelty scenarios. (D) Density distributions 
for impactful novelty (uptake per new link), again suggesting similar distributions across the K 
and FREX scenarios. (E) Mean impactful novelty over time, suggesting that the “stable” impactful 
novelty starts at approximately 1982. (F) Relatively high correlations between the different 
scenarios for the measure of impactful novelty. 
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a  Topic 53     b  Topic 106 

c  Topic 128     d  Topic 225 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S3.  Exemplary topics and their extracted concepts using FREX. 
(A-D) Concepts from a small selection of extracted topics in our K = 500 topic model where we 
equally balance frequency and exclusivity. Topics are research areas and discourse themes 
characterized by set of co-used terms, some of which are more salient to the latent themes than 
others. (A) Students engaging in this topic are writing about astrophysics. (B) Students engaging 
in Topic 106 are writing about labor economics and income. (C) Students engaging in Topic 128 
focus on rhetoric and classic Greek philosophers (with some exceptions). (D) Students engaging 
in Topic 225 are writing about sleep patterns and issues surrounding it. This is a small selection 
here, but the full set of topics is available online 
(https://github.com/bhofstra/diversity_innovation_paradox). 
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Figure S4. Gender and racial representation of students in academic fields over time 
(A-D) We aggregate the disciplines into broader academic fields for a depiction of minority 
statuses. Across all fields, women and non-white students are numerical minorities and keep that 
status very frequently. (A) Women become numerical majorities (and men minorities) when the 
fraction of male students drops below .5 (e.g., Social Sciences > 1990). (B) Depicting the size of 
the numerical gender majority. Women become majorities in case where the fraction of men drops 
below .5 in panel A, which happens only in few cases. (C-D) In very few cases do non-white 
students become numerical racial majorities (i.e., only if white < .5). However, becoming a 
numerical racial majority is not a given when white < .5, as there are more than two racial groups 
– i.e., whites (or another group) might still be majorities if the remaining fraction is split into 
several smaller nonwhite subgroups. Note that only in certain years do non-whites become a 
numerical majority in engineering. 
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Table S1. Descriptive statistics of the number of concepts in a dissertation abstract. 
 Mean SD Median Minimum Maximum 
Overall 56.50 19.44 57 0 356 
By race      

URM 57.14 19.34 57 0 356 
Asian 56.69 19.12 57 0 219 
White 56.27 19.56 56 0 331 

By gender      
Women 57.22 19.39 57 0 265 
Men 56.02 19.53 56 0 356 

By field      
Biology & Health 60.02 16.77 60 0 248 
Earth Sciences 57.63 17.96 59 0 183 
Engineering 54.48 18.86 54 0 356 
Humanities 66.93 22.86 69 0 331 
Physical Sciences 50.16 19.38 51 0 219 
Social and Behavioral Sciences 54.43 18.03 54 0 265 
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Table S2. Sensitivity analyses across K and FREX scenarios mostly show a similar pattern of 
results. 
We find a qualitatively similar pattern of results across our K and FREX scenarios and this shows 
that most of our main results are insensitive to the way we extract concepts – i.e., weighing more 
to frequency or exclusivity – despite that the quantitative correlations might vary across scenarios. 
“Yes” in the table below indicates a statistically significant effect (i.e., one-sided p-value < .05) 
Note that we especially find some variable results in the lower K (400) or very high exclusivity 
scenarios. This likely results from our conservative filter to detect spurious links that we describe 
in the Materials and Methods. We present the “middle” scenario as the main one in the paper 
(K500, freq50/excl50). 
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Novelty (# new links)          
% Same-gender ↓ # new links Yes Yes Yes Yes Yes Yes Yes Yes Yes 
% Same-race ↓ # new links No Yes Yes Yes Yes Yes Yes Yes Yes 
Women ↑ # new links Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Non-white ↑ # new links Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Impactful novelty (uptake per new link)          
% Same-gender ↑ uptake per new link No No Yes No Yes Yes Yes Yes Yes 
% Same-race ↑ uptake per new link No No No No No No No No No 
Women ↓ uptake per new link Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Non-white ↓ uptake per new link No No No Yes Yes Yes Yes Yes No 

Distal novelty          
% Same-gender ↑ distality Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Distality ↓ uptake per new link Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Novelty’s relation with careers          
Novelty ↑ faculty research Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Novelty ↑ continued research Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Impactful novelty’s relation with careers          
Novelty ↑ faculty research Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Novelty ↑ continued research Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Novelty discount on careers          
Gender minorities novelty discount for faculty No Yes Yes Yes Yes Yes No Yes Yes 
Gender minorities novelty discount for cont. research No Yes Yes No No Yes No Yes Yes 
Racial minorities novelty discount for faculty Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Racial minorities novelty discount for cont. research Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Impactful novelty discount on careers          
Gender minorities impact discount for faculty Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Gender minorities impact discount for cont. research Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Racial minorities impact discount for faculty Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Racial minorities impact discount for cont. research No No No No No No No No No 
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Table S3. Novelty and impactful novelty correspond with publication productivity and impact. 
Descriptive analyses (linear regression models) where we regress total number of publications 
and accumulated citations (both logged) of students’ work on novelty and impactful novelty. We 
use fixed effects for academic discipline, year of PhD graduation, and PhD university. We find 
that the novelty and impactful novelty positively relate to the number of publications and students’ 
accumulated citations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  log(# Publications) log(# Citations) 
  Coef. S.E. p Coef. S.E. p Coef. S.E. p Coef. S.E. p 
log(# New links) 0.034 0.001 0.000 

   
0.030 0.002 0.000 

   

log(Uptake per new link) 
   

0.037 0.002 0.000 
   

0.054 0.002 0.000 
log(# Publications) 

      
1.337 0.002 0.000 1.333 0.002 0.000 

Observations 532,077 425,318 464,920 374,415 
Inclusion criteria Publishing Publishing with nonzero 

novelty  
Cited publication Cited publication with 

nonzero novelty  
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Table S4. Concepts with their ten nearest, most-proximal neighbors in the embedding space. 
While there are no predefined or definitive tests for precisely quantifying what concept embeddings 
capture, we show here that concept embeddings capture semantic distances between concept quite 
effectively. To do this, we consider a few arbitrary concepts and look at their ten nearest neighbors 
in the embedding space as shown. By examining the set of nearest neighbors for these set of sample 
concepts, we note that the nearest neighbors are semantically similar to the focal concept.  For 
instance, note that words which are similar to “syntax” include concepts like “grammar,” “phrase 
structure,” “semantics,” and “word order” suggesting that concepts close to other concepts in 
this vector space captured through the embeddings effectively capture two concepts that are highly 
related substantively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Concept Ten nearest neighbors in the embedding space    
gene gene_encod genes_involv pathway_gen gene_clust gene_locus 
 genes_were_found genes_loc gene_rev gene_set regulatory_target 
magnet magnetic_field local_magnet magnetoresist nonmagnet ferromagnet 
 high_magnet external_magnet large_magnetic_field weak_magnet hard_axi 
hiv hiv_infect hiv-infect human_immunodeficiency_virus hcv hiv_transmiss 
 hiv-posit gbv-c haart hiv_posit hiv_diseas 
fiscal fiscal_polici budgetari revenues_and_expenditur intergovernmental_gr non-fisc 
 debt_servic fiscal_stress public_spend local_fisc state_fisc 
christian evangel non-christian theolog catholic christian_faith 
 judaism nicen jewish_peopl american_protest montanist 
optic qoct wavelength-select solid_immers optical_filt light_guid 
 coupled_cav coherent_light superlens wavelength-tun all-fib 
topolog binary_hypercub vertex_and_edg fat-tre global_topolog connection_matrix 
 sw-banyan rectangular_du physical_topolog graph_properti graph_represent 
buddhist buddhism daoist non-buddhist taoist theravada 
 tantric pure_land buddha chinese_buddhist neo-confucian 
religion religi traditional_religion american_civil_religion manikkavacakar christian 
 sikhism salaf relationship_between_religion varkari islamic_faith 
oxygen o2 high_oxygen molecular_oxygen oxid sulfur 
 low_oxygen carbon_dioxid presence_of_oxygen amount_of_oxygen peroxid 
laser q-switch laser_puls diode-pump fs_puls narrow_linewidth 
 diode_las pump_sourc 1064nm laser_beam femtosecond_las 
electron spin_degree_of_freedom single-electron spin_hall_effect spin_accumul charge_and_spin 
 conduction_electron electron-volt photoinject coupled_quantum_wel single_quantum_dot 
proton deuteron methylene_proton protonated_and_unproton proton_transf n-proton 
 d-channel dominant_react dehydron hydrazyl halogen_atom 
photon single_photon polarization-entangl entangled_photon_pair nonlinear_cryst photon_pair 
 spontaneous_parametr single-photon high_harmonic_gener beamstrahlung antibunch 
oil petroleum asphaltene_cont crude_oil oil_extract oil_sand 
 bitumen-deriv linse bitumen liquefied_natural_ga soybean_oil 
tomb sarcophagi funerari statu monument stela 
 palac shrine templ necropoli statuett 
syntax syntact syntactic_structur grammar syntactic_and_semant phrase_structur 
 grammat syntactic_analysi semant grammatical_categori word-ord 
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